Revit Tutorial – Displaying Span to Depth Ratio of Steel Beams

In this tutorial we shall look at a method of calculating and displaying the Span to Depth ratio for steel primary and secondary beams. In early scheme design of a steel structure many engineers like to use the span to depth ratio to size members assuming a uniform loading across the beam.

Revit Span to Depth Ratio on Steel Beams

Revit can be used to calculate and display the Span to Depth Ratio by creating a shared parameter and making a simple formula. Typically, a span to depth ratio of 13-15 is used for primary beams and 18-20 for secondary beams. In the following tutorial I will edit a UB family, add a shared parameter and then use the value of this and the structural usage to activate certain colours with filters. The image below shows the filters colouring, green is OK, red is over the limit and yellow is under the limit. To follow this tutorial, you will need Revit 2016 or later.

The first step is to create a shared parameter, this needs to be shared as this may need to appear in a schedule or be taggable. On the Manage Ribbon click the Shared Parameters command as shown below.Shared Parameter Command

If you already have a Shared Parameter file, then click the New Parameter command as shown below. If everything is inactive, then you will need to create a new parameter file by clicking the Create button.Shared Parameter Dialog Box

You will then be presented with the Parameter Properties Dialog. I am naming the new parameter SDR (Span to Depth Ratio) but you can use something else if you prefer. You will need to ensure that the new parameter is created as a Number. Click OK to both dialog boxes. Your new Shared Parameter is now ready for use.Shared Parameter Properties Dialog Box

Next you edit a Universal Beam family (or other section type for non-UK members). In the Project Browser, open the families folder and browse to Structural Framing. Below I am adding the parameter to UB-Universal Beams, but you can add this to any Section you require.

Families Folder in the Project Browser

Right Click over the family and select edit. You are now in the Family Editor. On the Home Ribbon click the Family Types command as shown below

Revit Family Types Command

In the Family Types Dialog box click the New Parameter command as shown below.

New Parameter Command

In the Parameter Properties Dialog click the Shared Parameter radio button and then select the Select button as shown below.

Create Parameter from Shared Parameter File

Select your new SDR parameter and click OK. You now need to set the new parameter to Instance and group the parameter under Structural Analysis. Click OK. You should now see your new parameter in the Structural Analysis group.

Set SDR parameter to Instance and Structural Analysis

Create the following formula. round(Length/Height)

Parameter Formula

This will take the length of the beam and divide this by the section height. Note that the section height appears under the Structural Section Geometry group. We then round this number to get a ratio value.  Save your new family and repeat for other families where you want to calculate the span to depth ratio.

Next you create a project parameter for your Span to Depth Ratio. This will enable you to create a filter. On the Manage ribbon click the Project Parameter button as shown below.

Project Parameter Command

In the Project Parameter dialog, click the Add command. You will then see the Parameter Properties dialog as shown below. Configure the dialog by selecting Shared Parameter, select your SDR parameter and then click OK. Make sure that Instance is checked, group the parameter under Structural Analysis and check the category, Structural Framing. Click OK.

Revit Parameter Properties Dialog

You now complete the last step to create a series of filters to colour the beams by their span to depth ratio. In this example you create a filter for secondary framing. You need to ensure that you have secondary framing in your project for testing. In a Project with the edited families that you have created in the steps above, open the Visibility/Graphics Override dialog and select the Filters Tab as shown below.

Visibility Graphics Override Dialog

In the Filters tab click the Edit/New Button at the bottom of the dialog box. In the Filters Dialog box select the New command in the bottom left as shown in the image below.

Revit Filters Dialog

In the Filter Name dialog box type Secondary Framing – Span/Depth OK.

Filter Name Dialog

You can now set the Category, Structural Framing and then set the AND rules to the following. ADR is greater that or equal to 18 AND SDR is less than or equal to 20 AND Structural Usage equal Purlin. Note that the Structural Usage may have differing terminology depending on the regional settings and template applied. Click OK.

Filters - Adding And and Or filters

You now select the Add command to add your new filter into the Visibility/Graphic Overrides Dialog.

You can then add green to override the linework and for extra impact add a solid green shade to the members. Anything that displays green is now in the correct span to depth range.

Filters applied to VisibilityGraphic Override Dialog

Once the filter has been set your secondary framing will appear green when the correct span to depth ratio is achieved. Note that you can create additional filters to show members that exceed and are too deep. You can also colour the SDR values in a structural framing schedule.

Hope you find this useful? I will try and create a tutorial video when I have some time.

LawrenceH

Revit 2015 – Structural Framing Enhancements

This will be a very interesting year with regards to steel detailing, fabrication and Autodesk software. A few months back Autodesk purchased Graitec Advance Steel and Advance Concrete to extend their offering in the steel detailing & fabrication industry. The only other Autodesk product was AutoCAD Structural Detailing which I would imagine will start to disappear from the various Autodesk suites that included this as there have been very few developments with this software for the past couple of years

Revit 2015 Splash Screen

This year Revit 2015 has seem some great interface improvements with regards to the justification points on steel and precast members and member offsets. We will begin by looking at the justification point tool.

Revit 2015 - Justification Points

This is essentially an ease of use improvement to an existing set of tools to offset steel, timber or precast member both laterally or vertically from the original position to predefined points. This will only reposition the physical position of the member and leave the analytical model unchanged.  The tool can be used equally well in plan, elevation and sections as well as 3D views.

Revit 2015 - Beam Justification points

The offset command will reposition the framing member graphically in the Y and Z axis. This is a much easier way of offsetting the structural framing members.

Revit 2015 - Y and Z graphical Offset

 

The change Reference tool is perhaps my favourite new framing tool in Revit 2015, this tool allows the user to select a new reference for the end of a joined beam and then cycle between these references by using the Change Reference command. See the image below.

Revit 2015 - Picked Reference on Structural FramingRevit 2015 - Change Reference

Another interesting feature is an existing tool from Revit 2013, the humble shape handle. For those of you that didn’t use Revit 2013 or earlier releases the shape handles allowed a steel, precast or timber framing member to have its physical length changed graphically. Revit 2014 omitted this tool and instead relied on the user inputting values into the Properties Palette which was slightly frustrating!

Revit 2015 - Shape Handles

Structural Framing members can now also carry more information about the members physical dimension as well as analysis properties. Each Framing family now has a new category called Section Shape Property.

Revit 2015 - New Section Shape parameter

Once again I will create a detailed tutorial video on these features when I have access to the final shipping release of Revit 2015.

Enjoy,

lawrenceh

Revit Structure Tutorial – Problems drawing Channels and Angle

http://www.youtube.com/watch?v=BTTFfpAzj3A

Have you ever found that when using sections such as Channels and angles the default insertion is on the centroid of the structural member? This can be very frustrating and makes accurate placement of these members very time consuming.

There is a fairly simple way of fixing this problem and adjusting the family files so the sections draw and behave in a more rational way and in this short tutorial I will reveal all!

The above image shows the problem while drawing an angle, you can see that the reference plane was my intended steel centre but the angle is drawn at a strange location. This location is actually the centroid of the steel section but is not very useful for the technician! In the below example you can see the default Autodesk angle profile with two parameters that control the centroid and insertion position. These are the x and y parameters.

What I have done for the angle is edited the x and y parameters to equal half of the section width and depth so that the section is drawn down my desired centre line. This then makes it easy to control the lateral justification as you can see in the below image:

To edit the x and y parameters effectively you will need to edit the type catalogue TXT file. This is found in the same location as your Revit Family file (.rfa). In order for the type catalogue TXT file to work it has to have exactly the same name as the rfa. See image below:

To make life easier, I like to edit the text file in Microsoft Excel as the data is then presented in neat columns and you can use formulae and other tools to help develop type catalogues very quickly. As you can see from the example below, I have used a simple formula to calculate the centre of the sections.

Once this is done you can simply save the excel sheet as a CSV (comma delaminated) file and then rename this to text file (.txt).

As this may be the first time some of you have edited a type catalogue I have made a short YouTube Video to assist your understanding.

http://www.youtube.com/watch?v=BTTFfpAzj3A

LawrenceH